Лабораторная работа. Настройка и проверка ACL-списков для IPv6

Топология

Таблица адресации

Устройство	Интерфейс	IP-адрес	Шлюз по умолчанию
R1	G0/0	2001:DB8:ACAD:B::1/64	N/A
	G0/1	2001:DB8:ACAD:A::1/64	N/A
	S0/0/0 (DCE)	2001:DB8:AAAA:1::1/64	N/A
R2	S0/0/0	2001:DB8:AAAA:1::2/64	N/A
	S0/0/1 (DCE)	2001:DB8:AAAA:2::2/64	N/A
R3	G0/1	2001:DB8:CAFE:C::1/64	N/A
	S0/0/1	2001:DB8:AAAA:2::1/64	N/A
S1	VLAN1	2001:DB8:ACAD:A::A/64	N/A
S2	VLAN1	2001:DB8:ACAD:B::A/64	N/A
S3	VLAN1	2001:DB8:CAFE:C::A/64	N/A
PC-A	NIC	2001:DB8:ACAD:A::3/64	FE80::1
PC-B	NIC	2001:DB8:ACAD:B::3/64	FE80::1
PC-C	NIC	2001:DB8:CAFE:C::3/64	FE80::1

Задачи

Часть 1. Настройка топологии и установка исходного состояния устройства

Часть 2. Конфигурация устройств и проверка подключения

Часть 3. Настройка и проверка АСL-списков для IPv6

Часть 4. Редактирование ACL-списков для IPv6

Исходные данные/сценарий

Фильтрация IPv6-трафика путём создания ACL-списков для IPv6 и их применения на интерфейсах аналогична способу, по которому вы создавали именованные ACL-списки для IPv4. В IPv6 определены расширенные и именованные ACL-списки. Стандартные и нумерованные ACL-списки больше не используются для IPv6. Чтобы применить ACL-список IPv6 на интерфейсе vty, следует использовать новую команду **ipv6 traffic-filter**. Команда **ipv6 access-class** до сих пор используется для применения ACL-списки ACL-списков IPv6 на интерфейсах.

В рамках лабораторной работы вам предстоит применить правила фильтрации IPv6, а затем убедиться в правильной работе списков для ограничения доступа. Также вам нужно будет внести изменения в ACL-список IPv6 и очистить счётчики совпадений.

Примечание. В лабораторных работах CCNA используются маршрутизаторы с интегрированными службами серии Cisco 1941 под управлением OC Cisco IOS 15.2(4) M3 (образ universalk9). В лабораторной работе используются коммутаторы серии Cisco Catalyst 2960s под управлением OC Cisco IOS 15.0(2) (образ lanbasek9). Допускается использование коммутаторов и маршрутизаторов других моделей, под управлением других версий OC Cisco IOS. В зависимости от модели устройства и версии Cisco IOS доступные команды и выходные данные могут отличаться от данных, полученных при выполнении лабораторных работ. Точные идентификаторы интерфейса указаны в таблице сводной информации об интерфейсе маршрутизатора в конце этой лабораторной работы.

Примечание. Убедитесь, что предыдущие настройки маршрутизаторов и коммутаторов удалены, и они не имеют загрузочной конфигурации. Если вы не уверены в этом, обратитесь к преподавателю.

Необходимые ресурсы:

- 3 маршрутизатора (Cisco 1941 под управлением ОС Cisco IOS 15.2(4) МЗ (образ universal) или аналогичная модель);
- 3 коммутатора (Cisco 2960 под управлением ОС Cisco IOS 15.0(2) (образ lanbasek9) или аналогичная модель);
- 3 компьютера (под управлением Windows 7, Vista или XP с программой эмуляции терминала, например Tera Term);
- консольные кабели для настройки устройств Cisco IOS через консольные порты;
- кабели Ethernet и последовательные кабели в соответствии с топологией.

Часть 1: Настройка топологии и инициализация устройств

В первой части лабораторной работы вам нужно настроить топологию сети и при необходимости удалить все конфигурации.

Шаг 1: Подключите кабели в сети в соответствии с топологией.

Шаг 2: Выполните инициализацию и перезагрузку маршрутизатора и коммутаторов.

Часть 2: Настройка устройств и проверка подключения

Во второй части вам предстоит настроить базовые параметры маршрутизаторов, коммутаторов и компьютеров. Имена и адреса устройств можно найти в топологии и таблице адресации в начале этой лабораторной работы.

Шаг 1: Настройте IPv6-адреса на всех ПК.

Настройте глобальный индивидуальный IPv6-адрес в соответствии с таблицей адресации. Используйте локальный адрес канала **FE80::1** для шлюза по умолчанию на всех ПК.

Шаг 2: Настройте коммутаторы.

- а. Отключите поиск DNS.
- b. Назначьте имя узла.
- с. Назначьте имя домена для сспа-lab.com.
- d. Зашифруйте все незашифрованные пароли.
- e. Создайте баннер MOTD, предупреждающий пользователей о том, что неавторизованный доступ запрещён.
- f. Создайте базу данных локального пользователя с именем пользователя **admin** и паролем **classadm**.
- g. Назначьте class в качестве зашифрованного пароля привилегированного режима EXEC.
- h. Назначьте cisco в качестве пароля консоли и включите вход по паролю.
- i. Активируйте возможность входа на линии VTY с помощью локальной базы данных.
- j. Создайте ключ шифрования RSA для SSH с длиной 1024 бит.

- k. Измените настройку линий VTY transport input на настройку all только для протоколов SSH и Telnet.
- I. Назначьте IPv6-адрес для VLAN 1 в соответствии с таблицей адресации.
- m. От имени администратора отключите все неактивные интерфейсы.

Шаг 3: Настройте базовые параметры на всех маршрутизаторах.

- а. Отключите поиск DNS.
- b. Назначьте имя узла.
- с. Назначьте имя домена для ccna-lab.com.
- d. Зашифруйте все незашифрованные пароли.
- е. Создайте баннер MOTD, предупреждающий пользователей о том, что неавторизованный доступ запрещён.
- f. Создайте базу данных локального пользователя с именем пользователя admin и паролем classadm.
- g. Назначьте class в качестве зашифрованного пароля привилегированного режима EXEC.
- h. Назначьте **cisco** в качестве пароля консоли и включите вход по паролю.
- i. Активируйте возможность входа на линии VTY с помощью локальной базы данных.
- ј. Создайте ключ шифрования RSA для SSH с длиной 1024 бит.
- k. Измените настройку линий VTY transport input на настройку all только для протоколов SSH и Telnet.

Шаг 4: Настройте IPv6-параметры на маршрутизаторе R1.

- а. Настройте индивидуальный IPv6-адрес на интерфейсах G0/0, G0/1 и S0/0/0.
- b. Настройте локальный IPv6-адрес канала на интерфейсах G0/0, G0/1 и S0/0/0. На всех трёх интерфейсах используйте **FE80:: 1** в качестве локального адреса канала.
- с. На интерфейсе S0/0/0 установите тактовую частоту 128000.
- d. Включите интерфейсы.
- е. Включите IPv6-маршрутизацию одноадресной передачи.
- f. Настройте маршрут IPv6 по умолчанию для использования интерфейса S0/0/0.

R1(config) # ipv6 route ::/0 s0/0/0

Шаг 5: Настройте параметры IPv6 на маршрутизаторе R2.

- а. Настройте индивидуальный IPv6-адрес на интерфейсах S0/0/0 и S0/0/1.
- b. Настройте локальный IPv6-адрес канала на интерфейсах S0/0/0 и S0/0/1. На обоих интерфейсах используйте **FE80:: 2** в качестве локального адреса канала.
- с. На интерфейсе S0/0/1 установите тактовую частоту со значением 128000.
- d. Включите интерфейсы.
- е. Включите IPv6-маршрутизацию одноадресной передачи.
- f. Настройте статические IPv6-маршруты для маршрутизации трафика на подсети LAN, подключенные к маршрутизаторам R1 и R3.

R2(config) # ipv6 route 2001:db8:acad::/48 s0/0/0 R2(config) # ipv6 route 2001:db8:cafe:c::/64 s0/0/1

Шаг 6: Настройте параметры IPv6 на маршрутизаторе R3.

- а. Настройте индивидуальный IPv6-адрес на интерфейсах G0/1 и S0/0/1.
- b. Настройте локальный IPv6-адрес канала на интерфейсах G0/1 и S0/0/1. На обоих интерфейсах используйте **FE80:: 1** в качестве локального адреса канала.
- с. Включите интерфейсы.
- d. Включите IPv6-маршрутизацию одноадресной передачи.
- e. Настройте маршрут IPv6 по умолчанию для использования интерфейса S0/0/1.

R3(config) # ipv6 route ::/0 s0/0/1

Шаг 7: Проверка соединения.

- а. Все компьютеры должны успешно выполнять эхо-запросы ко всем остальным компьютерам, указанным в топологии.
- b. Подключитесь по Telnet к маршрутизатору R1 со всех компьютеров в топологии.
- с. Подключитесь по SSH к маршрутизатору R1 со всех компьютеров в топологии.
- d. Подключитесь по Telnet к коммутатору S1 со всех компьютеров в топологии.
- е. Подключитесь по SSH к коммутатору S1 со всех компьютеров в топологии.
- f. Теперь выявите и устраните неполадки с подключением, поскольку ACL-списки, которые вы создадите в третьей части лабораторной работы, ограничат доступ к определённым областям сети.

Примечание. В соответствии с требованиями Tera Term IPv6-адрес назначения должен быть в скобках. Введите IPv6-адрес, как показано, нажмите **OK**, а затем нажмите **Continue (Продолжить)**, чтобы принять предупреждение системы безопасности и подключиться к маршрутизатору.

📒 Tera Term - [разъединено] VT		
Файл One Tera Term: Новое	соединение	×
	Xocr: [2001:db:8:cafe:c::1]	
	<u> И</u> стория Сервис ⊙ Те <u>I</u> net <u>п</u> орт	TCP#: 22
	⊚ <u>S</u> SH <u>в</u> ерсия S	SH: SSH2 🔻
	© Другие <u>п</u> ротоко	л: UNSPEC -
© <u>с</u> ом	Порт: СОМ1: Последователь	ный порт (СОР 👻
	ОК Выход Помои	46
		-

Введите настроенные учётные данные пользователя (имя пользователя admin, пароль classadm) и в диалоговом окне SSH Authentication (Аутентификация SSH) выберите Use plain password to log in (Использовать незашифрованный пароль). Для продолжения нажмите кнопку OK.

Аутентификация SSH						
Вход в 2001:db8:cafe:c::1						
Требуется аутентификация.						
Имя admin						
Фраза пароля:						
📝 Запомнить пароль в памяти						
Первый агент						
Вход с простым паролем						
Вход сключом RSA/DSA Закрытый ключ						
Вход с rhosts (SSH1) Скрытое имя Закрытый ключ	:					
🔘 Использовать для входа запрос/ответ (с клавиатуры)					
🔘 Использовать Pageant						
ОК Разъединение						

Часть 3: Настройка и проверка АСL-списков для IPv6

Шаг 1: Настройте и проверьте ограничения VTY на маршрутизаторе R1.

а. Создайте ACL-список, в соответствии с которым доступ к маршрутизатору R1 через Telnet разрешён только для узлов из сети 2001:db8:acad:a::/64. Все узлы должны обладать доступом к маршрутизатору R1 только через telnet.

R1(config)# ipv6 access-list RESTRICT-VTY

R1(config-ipv6-acl) # permit tcp 2001:db8:acad:a::/64 any

R1(config-ipv6-acl) # permit tcp any any eq 22

b. Примените ACL-список под именем RESTRICT-VTY на линиях VTY маршрутизатора R1.

```
R1(config-ipv6-acl)# line vty 0 4
R1(config-line)# ipv6 access-class RESTRICT-VTY in
R1(config-line)# end
R1#
```

с. Отобразите новый АСL-список.

R1# show access-lists

```
IPv6 access list RESTRICT-VTY
   permit tcp 2001:DB8:ACAD:A::/64 any sequence 10
   permit tcp any any eq 22 sequence 20
```

d. Убедитесь, что ACL-список RESTRICT-VTY пропускает только Telnet-трафик из сети 2001:db8:acad:a::/64.

Каким образом ACL-список RESTRICT-VTY разрешает доступ к маршрутизатору R1 через Telnet только для узлов из сети 2001:db8:acad:a::/64?

Какую функцию выполняет второе правило permit в ACL-списке RESTRICT-VTY?

Шаг 2: Ограничьте доступ через Telnet к сети 2001:db8:acad:a::/64.

 Создайте ACL-список под именем RESTRICTED-LAN, который заблокирует доступ через Telnet к сети 2001:db8:acad:a::/64.

```
R1(config) # ipv6 access-list RESTRICTED-LAN
```

- R1(config-ipv6-acl) # remark Block Telnet from outside
- R1(config-ipv6-acl)# deny tcp any 2001:db8:acad:a::/64 eq telnet
- R1(config-ipv6-acl) # permit ipv6 any any
- b. Примените ACL-список RESTRICTED-LAN на интерфейсе G0/1 для всего исходящего трафика.

```
R1(config-ipv6-acl) # int g0/1
```

R1(config-if) # ipv6 traffic-filter RESTRICTED-LAN out

- R1(config-if)# end
- с. Подключитесь по Telnet к коммутатору S1 от узлов PC-В и PC-С, чтобы проверить ограничение Telnet. Подключитесь по SSH к коммутатору S1 от узла PC-В, чтобы убедиться, что к этому узлу по-прежнему можно получить доступ через SSH. При необходимости выявите и устраните любые неполадки.
- d. Используйте команду show ipv6 access-list, чтобы просмотреть ACL-список RESTRICTED-LAN.

R1# show ipv6 access-lists RESTRICTED-LAN

```
IPv6 access list RESTRICTED-LAN
  deny tcp any 2001:DB8:ACAD:A::/64 eq telnet (6 matches) sequence 20
  permit ipv6 any any (45 matches) sequence 30
```

Обратите внимание, что каждое правило определяет количество попаданий или совпадений, возникших с момента применения ACL-списка на интерфейсе.

e. Используйте команду clear ipv6 access-list, чтобы сбросить счётчики совпадений для ACL-списка RESRICTED-LAN.

R1# clear ipv6 access-list RESTRICTED-LAN

f. Снова отобразите ACL-список с помощью команды **show access-lists**, чтобы убедиться, что счётчики удалены.

R1# show access-lists RESTRICTED-LAN

```
IPv6 access list RESTRICTED-LAN
  deny tcp any 2001:DB8:ACAD:A::/64 eq telnet sequence 20
  permit ipv6 any any sequence 30
```

Часть 4: Редактирование ACL-списков для IPv6

В четвёртой части вам предстоит внести изменения в ACL-список RESTRICTED-LAN, созданный в предыдущей части лабораторной работы. Перед внесением изменений в ACL-список рекомендуется удалить его из интерфейса, на котором он применён. Завершив редактирование, снова примените ACL-список на интерфейсе.

Примечание. Многие сетевые администраторы делают копию ACL-списка и вносят изменения в копии. После изменения копии администратор удаляет старый ACL-список и применяет на интерфейсе отредактированный вариант. Благодаря этому ACL-список можно не удалять, пока отредактированная копия не будет готова для применения.

Шаг 1: Удалите ACL-список из интерфейса.

```
R1(config) # int g0/1
```

R1(config-if) # no ipv6 traffic-filter RESTRICTED-LAN out

```
R1(config-if) # end
```

Шаг 2: Используйте команду show access-lists, чтобы просмотреть ACL-список.

```
R1# show access-lists
```

```
IPv6 access list RESTRICT-VTY
   permit tcp 2001:DB8:ACAD:A::/64 any (4 matches) sequence 10
   permit tcp any any eq 22 (6 matches) sequence 20
IPv6 access list RESTRICTED-LAN
   deny tcp any 2001:DB8:ACAD:A::/64 eq telnet sequence 20
   permit ipv6 any any (36 matches) sequence 30
```

Шаг 3: Создайте новую запись в АСL-списке, используя последовательную нумерацию.

```
R1(config) # ipv6 access-list RESTRICTED-LAN
```

```
R1(config-ipv6-acl)# permit tcp 2001:db8:acad:b::/64 host 2001:db8:acad:a::a
eq 23 sequence 15
```

Какую функцию выполняет добавленная разрешающая запись permit?

Шаг 4: Создайте новое правило ACL, вставив его в конец списка.

R1(config-ipv6-acl)# permit tcp any host 2001:db8:acad:a::3 eq www

Примечание. Данная разрешающая запись используется только для того, чтобы продемонстрировать добавление записи в конец ACL-списка. Для данной строки списка не должно быть совпадений, поскольку предыдущая запись permit совпадает со всем.

Шаг 5: Используйте команду show access-lists, чтобы просмотреть изменения ACLсписка.

```
R1(config-ipv6-acl)# do show access-list
IPv6 access list RESTRICT-VTY
   permit tcp 2001:DB8:ACAD:A::/64 any (2 matches) sequence 10
   permit tcp any any eq 22 (6 matches) sequence 20
IPv6 access list RESTRICTED-LAN
   permit tcp 2001:DB8:ACAD:B::/64 host 2001:DB8:ACAD:A::A eq telnet sequence 15
   deny tcp any 2001:DB8:ACAD:A::/64 eq telnet sequence 20
```

permit ipv6 any any (124 matches) sequence 30 permit tcp any host 2001:DB8:ACAD:A::3 eq www sequence 40

Примечание. Для выполнения любой команды привилегированного режима в режиме глобальной конфигурации или подрежиме можно использовать команду **do**.

Шаг 6: Удалите запись АСL-списка.

Используйте команду **по**, чтобы удалить только что добавленное правило permit.

R1(config-ipv6-acl) # no permit tcp any host 2001:DB8:ACAD:A::3 eq www

Шаг 7: Используйте команду do show access-lists RESTRICTED-LAN, чтобы просмотреть ACL-список.

```
R1(config-ipv6-acl)# do show access-list RESTRICTED-LAN
IPv6 access list RESTRICTED-LAN
    permit tcp 2001:DB8:ACAD:B::/64 host 2001:DB8:ACAD:A::A eq telnet sequence 15
    deny tcp any 2001:DB8:ACAD:A::/64 eq telnet sequence 20
    permit ipv6 any any (214 matches) sequence 30
```

Шаг 8: Снова примените список ACL RESTRICTED-LAN на интерфейсе G0/1.

```
R1(config-ipv6-acl)# int g0/1
R1(config-if)# ipv6 traffic-filter RESTRICTED-LAN out
R1(config-if)# end
```

Шаг 9: Проверьте изменения в АСL-списке.

От узла PC-В подключитесь к коммутатору S1 по Telnet. При необходимости выявите и устраните любые неполадки.

Вопросы на закрепление

- 1. Из-за чего счётчик совпадений для записи **permit ipv6 any any** списка RESTRICTED-LAN продолжает расти?
- 2. Какую команду следует использовать, чтобы сбросить счётчики для ACL-списка на каналах VTY?

Сводная информация об интерфейсах маршрутизаторов							
Модель маршрутизатора	Интерфейс Ethernet №1	Интерфейс Ethernet №2	Последовательный интерфейс №1	Последовательный интерфейс №2			
1800	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)			
1900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)			
2801	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/1/0 (S0/1/0)	Serial 0/1/1 (S0/1/1)			
2811	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)			
2900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)			

Сводная таблица интерфейсов маршрутизаторов

Примечание. Чтобы узнать, каким образом настроен маршрутизатор, изучите интерфейсы с целью определения типа маршрутизатора и количества имеющихся на нём интерфейсов. Эффективного способа перечисления всех комбинаций настроек для каждого класса маршрутизаторов не существует. В данной таблице содержатся идентификаторы возможных сочетаний Ethernet и последовательных (Serial) интерфейсов в устройстве. В таблицу не включены какие-либо иные типы интерфейсов, даже если на определённом маршрутизаторе они присутствуют. В качестве примера можно привести интерфейс ISDN BRI. Строка в скобках — это принятое сокращение, которое можно использовать в командах Cisco IOS для представления интерфейса.