Лабораторная работа. Лабораторная работа. Разработка и реализация схемы адресации IPv4 с использованием VLSM

Топология

Задачи

Часть 1. Изучить требования к сети

Часть 2. Разработать схему адресации VLSM

Часть 3. Выполнить кабельное соединение и настроить IPv4-сеть

Исходные данные/сценарий

Маска подсети переменной длины (VLSM) была разработана для экономии IP-адресов. При использовании VLSM сеть сначала разделяются на подсети, а затем подсети в свою очередь тоже разбиваются на подсети. Подобный процесс, который можно повторять множество раз, позволяет создавать подсети различных размеров на основе количества узлов, необходимых в каждой сети. Для эффективного использования VLSM необходимо планирование адресов.

В данной лабораторной работе вы получаете сетевой адрес 172.16.128.0/17, чтобы разработать схему адресации для сети, показанной на диаграмме топологии. VLSM будет использоваться для выполнения всех требований адресации. После того, как вы разработаете схему адресации с использованием VLSM, вам предстоит настроить интерфейсы на маршрутизаторах с соответствующими параметрами IP.

Примечание. В лабораторных работах CCNA используются маршрутизаторы с интегрированными службами серии Cisco 1941 под управлением OC Cisco IOS 15.2(4) M3 (образ universalk9). Возможно использование других маршрутизаторов и версий Cisco IOS. В зависимости от модели устройства и версии Cisco IOS доступные команды и выходные данные могут отличаться от данных, полученных

при выполнении лабораторных работ. Точные идентификаторы интерфейса указаны в таблице сводной информации об интерфейсах маршрутизаторов в конце лабораторной работы.

Примечание. Убедитесь, что предыдущие настройки маршрутизаторов и коммутаторов удалены, и они не имеют загрузочной конфигурации. Если вы не уверены в этом, обратитесь к преподавателю.

Необходимые ресурсы:

- 3 маршрутизатора (Cisco 1941 под управлением ОС Cisco IOS 15.2(4) МЗ (образ universal) или аналогичная модель);
- 1 ПК (с программой эмуляции терминала для настройки маршрутизаторов, например Tera Term);
- консольный кабель для настройки устройства Cisco IOS через порт консоли;
- последовательные кабели и кабели Ethernet (дополнительно), в соответствии с топологией;
- калькулятор Windows (дополнительно).

Часть 1: Изучение требований к сети

В первой части вам нужно изучить требования к сети, необходимые для разработки схемы адресации с использованием VLSM для сети, показанной на приведённой топологии, используя сетевой адрес 172.16.128.0/17.

Примечание. Для расчётов можно использовать калькулятор Windows и калькулятор IP-подсети, расположенный по адресу www.ipcalc.org.

Шаг 1: Определите количество доступных адресов узлов и количество необходимых подсетей.

Сколько адресов узлов доступно в сети /17?

Сколько всего адресов узлов требуется, исходя из топологии?

Сколько требуется подсетей в топологии сети? _____

Шаг 2: Определите наиболее крупную требующуюся подсеть.

Описание сети (например BR1 G0/1 LAN или BR1-HQ WAN) _____

Сколько IP-адресов требуется для наиболее крупной подсети?

Укажите самую маленькую подсеть, поддерживающую такое количество узлов.

Сколько адресов узлов поддерживает подсеть?

Можно ли разделить сеть 172.16.128.0/17 на подсети для того, чтобы она могла поддержать данную подсеть? _____

Какие два сетевых адреса образуются в результате данного разбиения на подсети?

В данной подсети используйте первый сетевой адрес.

Шаг 3: Определите вторую наиболее крупную требующуюся подсеть.

Описание сети _____

Сколько ІР-адресов требуется для второй наиболее крупной подсети? _____

© Корпорация Cisco и/или её дочерние компании, 2014. Все права защищены.

В данном документе содержится общедоступная информация корпорации Cisco.

Укажите наименьшую подсеть, поддерживающую такое количество узлов.

Сколько адресов узлов поддерживает подсеть?

Может ли оставшаяся подсеть быть снова разбита на подсети и продолжать поддерживать эту подсеть? _____

Какие два сетевых адреса образуются в результате данного разбиения на подсети?

В данной подсети используйте первый сетевой адрес.

Шаг 4: Определите следующую наиболее крупную подсеть.

Описание сети

Сколько ІР-адресов требуется для следующей наиболее крупной подсети?

Укажите наименьшую подсеть, поддерживающую такое количество узлов.

Сколько адресов узлов поддерживает подсеть?

Может ли оставшаяся подсеть быть снова разбита на подсети и продолжать поддерживать эту подсеть? _____

Какие два сетевых адреса образуются в результате данного разбиения на подсети?

В данной подсети используйте первый сетевой адрес.

Шаг 5: Определите следующую наиболее крупную подсеть.

Описание сети

Сколько ІР-адресов требуется для следующей наиболее крупной подсети?

Укажите наименьшую подсеть, поддерживающую такое количество узлов.

Сколько адресов узлов поддерживает подсеть?

Может ли оставшаяся подсеть быть снова разбита на подсети и продолжать поддерживать эту подсеть? _____

Какие два сетевых адреса образуются в результате данного разбиения на подсети?

В данной подсети используйте первый сетевой адрес.

Шаг 6: Определите следующую наиболее крупную подсеть.

Описание сети

Сколько ІР-адресов требуется для следующей наиболее крупной подсети?

© Корпорация Сівсо и/или её дочерние компании, 2014. Все права защищены.

Укажите наименьшую подсеть, поддерживающую такое количество узлов.

Сколько адресов узлов поддерживает подсеть?

Может ли оставшаяся подсеть быть снова разбита на подсети и продолжать поддерживать эту подсеть? _____

Какие два сетевых адреса образуются в результате данного разбиения на подсети?

В данной подсети используйте первый сетевой адрес.

Шаг 7: Определите следующую наиболее крупную подсеть.

Описание сети _____

Сколько IP-адресов требуется для следующей наиболее крупной подсети? _____

Укажите наименьшую подсеть, поддерживающую такое количество узлов.

Сколько адресов узлов поддерживает подсеть?

Может ли оставшаяся подсеть быть снова разбита на подсети и продолжать поддерживать эту подсеть? _____

Какие два сетевых адреса образуются в результате данного разбиения на подсети?

В данной подсети используйте первый сетевой адрес.

Шаг 8: Определите подсети, необходимые для поддержки последовательных каналов.

Сколько ІР-адресов узлов требуется для каждого последовательного канала подсети?

Укажите самую маленькую подсеть, поддерживающую такое количество узлов.

- а. Оставшуюся подсеть разделите на подсети и запишите ниже сетевые адреса, возникшие в результате этого разделения.
- b. Разделяйте первую подсеть каждой новой подсети, пока не получите четыре подсети /30. Ниже запишите первые три сетевых адреса этих подсетей /30.
- с. Ниже введите описания этих трёх подсетей.

[©] Корпорация Сіsco и/или её дочерние компании, 2014. Все права защищены. В данном документе содержится общедоступная информация корпорации Сіsco.

Часть 2: Разработка схемы адресации VLSM

Шаг 1: Рассчитайте информацию подсетей.

Используйте сведения, полученные в части 1, чтобы заполнить таблицу ниже.

Описание подсети	Необходимое количество узлов	Адрес сети/CIDR	Адрес первого узла	Широковещательный адрес
HQ G0/0	16 000			
HQ G0/1	8 000			
BR1 G0/1	4 000			
BR1 G0/0	2 000			
BR2 G0/1	1000			
BR2 G0/0	500			
HQ S0/0/0 – BR1 S0/0/0	2			
HQ S0/0/1 – BR2 S0/0/1	2			
BR1 S0/0/1 – BR2 S0/0/0	2			

Шаг 2: Заполните таблицу адресов интерфейсов.

Назначьте первые адрес узлов в подсети интерфейсам Ethernet. HQ следует назначить адреса узлов последовательных каналов до назначения адресов BR1 и BR2. BR1 следует назначить адрес узла последовательного канала до назначения BR2.

Устройство	Интерфейс	ІР-адрес	Маска подсети	Интерфейс
HQ	G0/0			16.000 узлов LAN
	G0/1			8 000 узлов LAN
	S0/0/0			BR1 S0/0/0
	S0/0/1			BR2 S0/0/1
BR1	G0/0			2 000 узлов LAN
	G0/1			4 000 узлов LAN
	S0/0/0			HQ S0/0/0
	S0/0/1			BR2 S0/0/0
BR2	G0/0			500 узлов LAN
	G0/1			1 000 узлов LAN
	S0/0/0			BR1 S0/0/1
	S0/0/1			HQ S0/0/1

© Корпорация Сіsco и/или её дочерние компании, 2014. Все права защищены.

В данном документе содержится общедоступная информация корпорации Cisco.

Часть 3: Выполнение кабельного соединения и настройка IPv4-сети

В третьей части вам предстоит выполнить кабельное соединение и настроить три маршрутизатора с использованием схемы адресации с использованием VLSM, разработанной вами в части 2.

Шаг 1: Подключите кабели в сети в соответствии с топологией.

Шаг 2: Настройте базовые параметры на каждом маршрутизаторе.

- а. Присвойте маршрутизатору имя устройства.
- b. Отключите поиск DNS, чтобы предотвратить попытки маршрутизатора неверно преобразовать введённые команды так, как если бы они были узлами.
- с. Назначьте class в качестве зашифрованного пароля привилегированного режима EXEC.
- d. Назначьте **cisco** в качестве пароля консоли и включите вход по паролю.
- e. Установите cisco в качестве пароля виртуального терминала и активируйте вход.
- f. Зашифруйте незашифрованные пароли.
- g. Создайте баннер с предупреждением о запрете несанкционированного доступа к устройству.

Шаг 3: Настройте интерфейсы на каждом маршрутизаторе.

- а. Назначьте IP-адрес и маску подсети каждому интерфейсу, руководствуясь таблицей, которую вы заполнили в части 2.
- b. Настройте описание для каждого интерфейса.
- с. Установите значение тактовой частоты на всех последовательных интерфейсах DCE на 128000. HQ(config-if) # clock rate 128000
- d. Активируйте интерфейсы.

Шаг 4: Сохраните конфигурацию на всех устройствах.

Шаг 5: Проверка соединения.

- а. От HQ отправьте эхо-запрос на адрес интерфейса S0/0/0 филиала BR1.
- b. От HQ отправьте эхо-запрос на адрес интерфейса S0/0/1 филиала BR2.
- с. От BR1 отправьте эхо-запрос на адрес интерфейса S0/0/0 филиала BR2.
- d. Если эхо-запросы не были успешными, выполните поиск и устранение неполадок в подключении.

Примечание. Эхо-запросы на интерфейсы GigabitEthernet других маршрутизаторов не будут успешными. Локальные сети, определённые для интерфейсов GigabitEthernet, смоделированы. Поскольку к этим локальным сетями не подключено ни одно устройство, они находятся в выключенном состоянии (down/down). Протокол маршрутизации необходим для того, чтобы другие устройства знали об этих подсетях. Интерфейсы GigabitEthernet также должны находиться во включённом состоянии (up/up), прежде чем протокол маршрутизации сможет добавить подсети в таблицу маршрутизации. Интерфейсы остаются в выключенном состоянии (down/down), пока к другому концу кабеля Ethernet не будет подключено устройство. В данной лабораторной работе рассматривается VLSM и настройка интерфейсов.

Вопросы на закрепление

Каким образом можно быстро рассчитать сетевые адреса идущих подряд подсетей /30?

Сводная таблица интерфейсов маршрутизаторов

Сводная информация об интерфейсах маршрутизаторов							
Модель маршрутизатора	Интерфейс Ethernet №1	Интерфейс Ethernet №2	Последовательный интерфейс №1	Последовательный интерфейс №2			
1800	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)			
1900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)			
2801	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/1/0 (S0/1/0)	Serial 0/1/1 (S0/1/1)			
2811	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)			
2900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)			

Примечание. Чтобы узнать, каким образом настроен маршрутизатор, изучите интерфейсы с целью определения типа маршрутизатора и количества имеющихся на нём интерфейсов. Эффективного способа перечисления всех комбинаций настроек для каждого класса маршрутизаторов не существует. В данной таблице содержатся идентификаторы возможных сочетаний Ethernet и последовательных (Serial) интерфейсов в устройстве. В таблицу не включены какие-либо иные типы интерфейсов, даже если на определённом маршрутизаторе они присутствуют. В качестве примера можно привести интерфейс ISDN BRI. Строка в скобках — это принятое сокращение, которое можно использовать в командах Cisco IOS для представления интерфейса.