Лабораторная работа. Настройка маршрутизации между VLAN для каждого интерфейса

Топология

Таблица адресации

Устройство	Интерфейс	IP-адрес	Маска подсети	Шлюз по умолчанию
R1	G0/0	192.168.20.1	255.255.255.0	N/A
	G0/1	192.168.10.1	255.255.255.0	N/A
S1	VLAN 10	192.168.10.11	255.255.255.0	192.168.10.1
S2	VLAN 10	192.168.10.12	255.255.255.0	192.168.10.1
PC-A	NIC	192.168.10.3	255.255.255.0	192.168.10.1
РС-В	NIC	192.168.20.3	255.255.255.0	192.168.20.1

Задачи

Часть 1. Построение сети и настройка базовых параметров устройства

Часть 2. Настройка коммутаторов с сетями VLAN и транковой связи

Часть 3. Проверка транковой связи, сетей VLAN, маршрутизации и подключения

Исходные данные/Сценарий

Однако, прежде чем переходить к маршрутизации между VLAN методом router-on-a-stick (ROS) или настройке коммутации 3-го уровня, рекомендуется получить представление и навыки настройки непосредственно этого типа маршрутизации. Кроме того, вы можете столкнуться с интерфейсной маршрутизацией между VLAN в организациях с очень маленькими сетями. Простота в использовании — это одно из преимуществ маршрутизации между VLAN с использованием устаревшего метода.

В рамках настоящей лабораторной работы вам предстоит настроить один маршрутизатор с двумя сетями, подключёнными через интерфейсы маршрутизатора Gigabit Ethernet. На коммутаторах будут настроены две отдельные сети VLAN, и вам будет необходимо настроить маршрутизацию между этими VLAN.

Примечание. В этой лабораторной работе содержится минимальный набор фактических команд, необходимых для настройки маршрутизатора и коммутатора. Необходимые команды для конфигурации сети VLAN представлены в приложении А в конце этой лабораторной работы. Проверьте свои знания — настройте устройства, не обращаясь к информации, приведённой в приложении.

Примечание. В лабораторной работе используются маршрутизаторы с интегрированными службами серии Cisco 1941 под управлением ОС Cisco IOS 15.2(4) МЗ (образ universalk9). В лабораторной работе используются коммутаторы серии Cisco Catalyst 2960s под управлением ОС Cisco IOS 15.0(2) (образ lanbasek9). Допускается использование коммутаторов и маршрутизаторов других моделей, под управлением других версий ОС Cisco IOS. В зависимости от модели устройства и версии Cisco IOS доступные команды и выходные данные могут отличаться от данных, полученных при выполнении лабораторных работ. Точные идентификаторы интерфейса указаны в таблице сводной информации об интерфейсах маршрутизаторов в конце лабораторной работы.

Примечание. Убедитесь, что предыдущие настройки маршрутизаторов и коммутаторов удалены, и они не имеют загрузочной конфигурации. Если вы не уверены в этом, обратитесь к преподавателю.

Необходимые ресурсы

- 1 маршрутизатор (Cisco 1941 с универсальным образом М3 под управлением ОС Cisco IOS 15.2(4) или аналогичная модель);
- 2 коммутатора (Cisco 2960 под управлением ОС Cisco IOS 15.0(2), образ lanbasek9 или аналогичная модель);
- 2 ПК (под управлением OC Windows 7, Vista или XP с программой эмуляции терминала, например Tera Term);
- консольные кабели для настройки устройств Cisco IOS через консольные порты;
- кабели Ethernet, расположенные в соответствии с топологией.

Часть 1: Построение сети и настройка базовых параметров устройства

В первой части лабораторной работы вы настроите топологию сети и при необходимости удалите все конфигурации.

Шаг 1: Подключите кабели в сети в соответствии с топологией.

Шаг 2: Выполните инициализацию и перезагрузку маршрутизатора и коммутаторов.

Шаг 3: Настройте базовые параметры для маршрутизатора R1.

- а. Отключите поиск DNS.
- b. Назначьте имя устройства.
- с. Назначьте class в качестве зашифрованного пароля привилегированного режима EXEC.
- d. Назначьте cisco в качестве пароля консоли и виртуального терминала VTY и активируйте вход.
- е. Настройте адресацию на интерфейсах G0/0 и G0/1 и включите оба интерфейса.

Шаг 4: Настройте базовые параметры на коммутаторах S1 и S2.

- а. Отключите поиск DNS.
- b. Назначьте имя устройства.
- с. Назначьте class в качестве зашифрованного пароля привилегированного режима EXEC.
- d. Назначьте **cisco** в качестве пароля консоли и виртуального терминала VTY и активируйте вход.

Шаг 5: Настройте базовые параметры на компьютерах РС-А и РС-В.

На компьютерах PC-A и PC-B настройте IP-адреса и адрес шлюза по умолчанию в соответствии с таблицей адресации.

Часть 2: Настройте коммутаторы для работы с сетями VLAN и создания транковых каналов

Во второй части лабораторной работы вы будете настраивать коммутаторы для сетей VLAN и транковых каналов.

Шаг 1: Настройте сети VLAN на коммутаторе S1.

- а. Создайте сеть VLAN 10 на коммутаторе S1. Назначьте Student в качестве имени сети VLAN.
- b. Создайте виртуальную локальную сеть VLAN 20. Назначьте **Faculty-Admin** в качестве имени для этой сети VLAN.
- с. Настройте F0/1 в качестве транкового порта.
- d. Назначьте порты F0/5 и F0/6 сети VLAN 10 и настройте оба порта в качестве портов доступа.
- е. Назначьте IP-адрес сети VLAN 10 и активируйте его. Сверьтесь с таблицей адресации.
- f. Настройте шлюз по умолчанию в соответствии с таблицей адресации.

Шаг 2: Настройте сети VLAN на коммутаторе S2.

- а. Создайте сеть VLAN 10 на коммутаторе S2. Назначьте Student в качестве имени сети VLAN.
- b. Создайте виртуальную локальную сеть VLAN 20. Назначьте **Faculty-Admin** в качестве имени для этой сети VLAN.
- с. Настройте F0/1 в качестве транкового порта.
- d. Назначьте порты F0/11 и F0/18 сети VLAN 20 и настройте оба порта в качестве портов доступа.
- е. Назначьте IP-адрес сети VLAN 10 и активируйте его. Сверьтесь с таблицей адресации.
- f. Настройте шлюз по умолчанию в соответствии с таблицей адресации.

Часть 3: Проверка транковой связи, сетей VLAN, маршрутизации и подключения

Шаг 1: Проверьте таблицу маршрутизации маршрутизатора R1.

- a. На маршрутизаторе R1 выполните команду **show ip route**. Какие маршруты указаны в маршрутизаторе R1?
- b. На коммутаторах S1 и S2 выполните команду show interface trunk. Настроен ли порт F0/1 на обоих коммутаторах на транковую связь? _____
- с. На коммутаторах S1 и S2 выполните команду show vlan brief. Убедитесь, что сети VLAN 10 и 20 активны и что соответствующие порты в коммутаторах находятся в соответствующих VLAN. Почему порт F0/1 не указан в какой-либо из активных VLAN?
- d. От компьютера PC-A в сети VLAN 10 отправьте эхо-запрос на компьютер PC-B в сети VLAN 20. Если маршрутизация VLAN работает правильно, эхо-запросы между сетями 192.168.10.0 и 192.168.20.0 должны быть успешными.

Примечание. Для успешной передачи эхо-запросов может потребоваться отключение брандмауэра.

е. Проверьте наличие подключения между всеми устройствами. Эхо-запросы должны быть успешными между всеми устройствами. Если эхо-запросы не удались, исправьте неполадки.

Вопросы на закрепление

В чём заключается преимущество использования устаревшего метода маршрутизации между VLAN?

Сводная информация об интерфейсах маршрутизаторов						
Модель маршрутизатора	Интерфейс Ethernet №1	Интерфейс Ethernet №2	Последовательный интерфейс №1	Последовательный интерфейс №2		
1800	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)		
1900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)		
2801	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/1/0 (S0/1/0)	Serial 0/1/1 (S0/1/1)		
2811	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)		
2900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)		

Сводная таблица интерфейсов маршрутизаторов

Примечание. Чтобы узнать, каким образом настроен маршрутизатор, изучите интерфейсы с целью определения типа маршрутизатора и количества имеющихся на нём интерфейсов. Эффективного способа перечисления всех комбинаций настроек для каждого класса маршрутизаторов не существует. В данной таблице содержатся идентификаторы возможных сочетаний Ethernet и последовательных (Serial) интерфейсов в устройстве. В таблицу не включены какие-либо иные типы интерфейсов, даже если на определённом маршрутизаторе они присутствуют. В качестве примера можно привести интерфейс ISDN BRI. Строка в скобках — это принятое сокращение, которое можно использовать в командах Cisco IOS для представления интерфейса.

Приложение А. Команды настройки

Коммутатор S1

S1(config)# vlan 10
S1(config-vlan)# name Student
S1(config-vlan)# exit
S1(config)# vlan 20
S1(config-vlan)# name Faculty-Admin
S1(config-vlan)# exit
S1(config)# interface f0/1
S1(config-if)# switchport mode trunk
S1(config-if)# interface range f0/5 - 6
<pre>S1(config-if-range) # switchport mode access</pre>
S1(config-if-range)# switchport access vlan 10
S1(config-if-range)# interface vlan 10
S1(config-if)# ip address 192.168.10.11 255.255.255.0
S1(config-if)# no shut
S1(config-if)# exit
<pre>S1(config)# ip default-gateway 192.168.10.1</pre>

Коммутатор S2

S2(config)# vlan 10
S2(config-vlan)# name Student
S2(config-vlan)# exit
S2(config)# vlan 20
S2(config-vlan)# name Faculty-Admin
S2(config-vlan)# exit
S2(config)# interface f0/1
S2(config-if)# switchport mode trunk
S2(config-if)# interface f0/11
S2(config-if)# switchport mode access
S2(config-if)# switchport access vlan 20
S2(config-if)# interface f0/18
S2(config-if)# switchport mode access
S2(config-if)# switchport access vlan 20
S2(config-if-range)# interface vlan 10
S2(config-if)#ip address 192.168.10.12 255.255.255.0
S2(config-if)# no shut
S2(config-if)# exit
S2(config)# ip default-gateway 192.168.10.1