


# Лабораторная работа: использование калькулятора Windows в работе с сетевыми адресами



### Задачи

- Часть 1. Доступ к калькулятору Windows
- Часть 2. Перевод чисел из одной системы счисления в другую
- Часть 3. Перевод IPv4-адресов узлов и масок подсети в двоичную систему счисления
- Часть 4. Определение количества узлов в сети с помощью двух цифр
- Часть 5. Преобразование МАС- и IPv6-адресов в двоичную форму

### Исходные данные/сценарий

При работе с компьютерами и сетевыми устройствами сетевые специалисты используют двоичные, десятичные и шестнадцатеричные числа. В операционную систему компании Microsoft входит встроенный калькулятор. Версия калькулятора в ОС Windows 7 включает обычный режим, который можно использовать для выполнения простейших арифметических задач, например сложения, вычитания, умножения и деления, а также расширенные возможности для программных, научных и статистических расчётов.

В данной лабораторной работе вы будете переводить числа в двоичную, десятичную и шестнадцатеричную системы счисления и обратно в режиме «Программист» калькулятора ОС Windows 7 и определять количество узлов, к которым можно обратиться, исходя из количества доступных узловых бит, в режиме «Инженерный».

#### Необходимые ресурсы

Один ПК (Windows 7, Vista или XP)

**Примечание**. В других операционных системах, отличных от Windows 7, функционал калькулятора для программистов может выглядеть иначе, чем в данной лабораторной работе. Произведение расчётов при этом возможно.

## Часть 1: Доступ к калькулятору Windows

В части 1 вы познакомитесь с встроенным приложением калькулятора Microsoft Windows и изучите доступные режимы.

- Шаг 1: Нажмите кнопку Пуск в ОС Windows и выберите пункт «Все программы».
- Шаг 2: Откройте папку «Стандартные» и нажмите на «Калькулятор».
- Шаг 3: Когда калькулятор откроется, выберите меню «Вид».

Какие четыре режима доступны?

\_\_\_\_\_

**Примечание**. В данной лабораторной работе используются режимы «Программист» и «Инженерный».

## Часть 2: Перевод чисел из одной системы счисления в другую

В режиме «Программист» калькулятора Windows доступны несколько систем счисления: Нех (шестнадцатеричная с основанием 16), Dec (десятичная с основанием 10), Oct (восьмеричная с основанием 8) и Bin (двоичная с основанием 2).

Мы привыкли использовать десятичную систему счисления с цифрами от 0 до 9. Она применяется в повседневной жизни для всех подсчётов и финансовых операций. Компьютеры и прочие электронные устройства для хранения и передачи данных, а также числовых вычислений, используют двоичную систему, состоящую только из нулей и единиц. Все компьютерные расчёты выполняются в двоичной (цифровой) форме, независимо от того, в каком виде они отображаются.

Недостаток этой системы в том, что двоичный эквивалент большого десятичного числа может быть очень длинным. Это усложняет чтение и написание чисел. Один из способов решения этой проблемы — организация двоичных чисел в группы по четыре шестнадцатеричных числа. Шестнадцатеричные числа имеют основание 16, а для представления двоичных или десятичных эквивалентов используется комбинация цифр от 0 до 9 и букв от А до F. Шестнадцатеричные символы используются при записи или отображении IPv6- и MAC-адресов.

Восьмеричная система счисления мало чем отличается от шестнадцатеричной. Восьмеричные числа представляют собой двоичные числа в группах по три цифры. В этой системе счисления используются цифры от 0 до 7. Восьмеричные числа — это ещё один удобный способ представления большого двоичного числа маленькими группами, однако данная система счисления не так распространена.

В этой лабораторной работе калькулятор Windows 7 используется для перевода чисел между различными системами счисления в режиме «Программист».

а. Откройтеменю Вид и выберите режим Программист.

| <b>Примечание</b> . В Windows XP и Vista доступны только два режима — «Обычный» и «Инженерный». Дл | ΙЯ |
|----------------------------------------------------------------------------------------------------|----|
| выполнения лабораторной работы в такой операционной системе подойдёт режим «Инженерный».           |    |

| Какая система счисления используется в данный момент?                                      |
|--------------------------------------------------------------------------------------------|
| Какие цифры на цифровой клавиатуре активны в десятичном режиме?                            |
| Установите переключатель <b>Bin</b> (Двоичная система). Какие цифры на цифровой клавиатуре |

\_\_\_\_\_

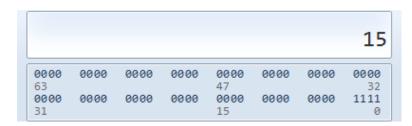
h.

активны теперь?

| почему другие цифры недоступны? |  |  |
|---------------------------------|--|--|
|                                 |  |  |

с. Установите переключатель **Hex** (Шестнадцатеричная система). Какие символы на цифровой клавиатуре активны теперь?

d. Установите переключатель **Dec**(Десятичная система). С помощью мыши нажмите на цифру **1**, а затем — на цифру **5**на цифровой клавиатуре. Вы ввели десятичное число 15.


**Примечание**. Для ввода значений можно также использовать цифры и буквы на клавиатуре. Если вы пользуетесь вспомогательной цифровой клавиатурой, введите число **15**. Если число не появляется в поле калькулятора, нажмите клавишу **Num Lock**, чтобы включить вспомогательную цифровую клавиатуру.

Установите переключатель Bin (Двоичная система). Что случилось с числом 15?

е. Числа переводятся из одной системы счисления в другую путём выбора нужного режима. Снова установите переключатель **Dec** (Десятичная система). Число будет снова конвертировано в десятичный формат.

f. Установите переключатель **Hex**, чтобы включить режим шестнадцатеричной системы. Какой шестнадцатеричный символ (от 0 до 9 и от A до F) соответствует десятичному числу 15?

g. Переключаясь между системами счисления, вы могли заметить, что во время преобразования отображалось двоичное число 1111. Это позволяет соотносить двоичные числа со значениями в других системах счисления. Каждый набор из четырёх бит представляет шестнадцатеричный символ или несколько десятичных символов.



h. Сотрите значение в окне, нажав на кнопку **C** над цифрой 9 на клавиатуре калькулятора. Переведите в двоичную, десятичную и шестнадцатеричную системы счисления следующие числа:

| Десятичное | Двоичное  | Шестнадцатеричное |
|------------|-----------|-------------------|
| 86         |           |                   |
| 175        |           |                   |
| 204        |           |                   |
|            | 0001 0011 |                   |
|            | 0100 1101 |                   |
|            | 0010 1010 |                   |
|            |           | 38                |
|            |           | 93                |
|            |           | E4                |

| i. | Заполняя приведённую выше таблицу, заметили вы что-либо общее между двоичными и шестнадцатеричными числами? |
|----|-------------------------------------------------------------------------------------------------------------|
|    |                                                                                                             |

## Часть 3: Перевод IPv4-адресов узлов и масок подсети в двоичную систему счисления

IPv4-адреса и маски подсети выражаются в десятичном формате с точкой-разделителем (четыре октета), например 192.168.1.10 и 255.255.255.0 соответственно. Так людям легче их читать. Каждый десятичный октет в адресе или маске можно преобразовать в 8 двоичных разрядов. Октет всегда представляет собой 8 двоичных битов. Если все 4 октета преобразовать в двоичную форму, сколько разрядов получится? \_\_\_\_\_\_\_

а. С помощью калькулятора Windows переведите IP-адрес 192.168.1.10 в двоичный формат и запишите его в следующую таблицу:

| Десятичное | Двоичное |
|------------|----------|
| 192        |          |
| 168        |          |
| 1          |          |
| 10         |          |

b. Маски подсетей, такие как 255.255.25.0, также отображаются в десятичном формате с точкойразделителем. Маска подсети всегда состоит из четырёх 8-разрядных октетов, каждый из которых выражается десятичным числом. С помощью калькулятора Windows преобразуйте восемь возможных десятичных значений октетов маски подсети в двоичные числа и запишите их в следующую таблицу:

| Десятичное | Двоичное |
|------------|----------|
| 0          |          |
| 128        |          |
| 192        |          |
| 224        |          |
| 240        |          |
| 248        |          |
| 252        |          |
| 254        |          |
| 255        |          |

с. Используя комбинацию IPv4-адреса и маски подсети, можно определить сетевую часть и рассчитать количество узлов, доступных в данной IPv4-подсети. Этот процесс рассматривается в части 4.

## Часть 4: Определение количества узлов в сети с помощью двух цифр

С адресом IPv4-сети и маской подсети можно определить сетевую часть, а также количество доступных в сети узлов.

 Чтобы вычислить количество узлов в сети, необходимо определить сетевую и узловую части адреса.

Адрес и маска подсети переводятся в двоичные числа на примере адреса 192.168.1.10 с подсетью 255.255.248.0. Записывая результаты перевода данных в двоичные числа, выставляйте биты.

| IP-адрес и маска подсети в десятичном формате | IP-адрес и маска подсети в двоичном формате |
|-----------------------------------------------|---------------------------------------------|
| 192.168.1.10                                  |                                             |
| 255.255.248.0                                 |                                             |

Поскольку первые 21 бит в маске подсети представляют собой идущие подряд единицы, соответствующие 21 бит IP-адреса в двоичном формате выглядят как 110000001010100000000 и соответствуют сетевой части адреса. Остальные 11 бит имеют вид 00100001010 — это узловая часть адреса.

Назовите десятичный и двоичный номера сети для данного адреса.

Назовите десятичную и двоичную узловые части для данного адреса.

Поскольку номер сети и широковещательный адрес используют два адреса из подсети, для определения количества доступных узлов в IPv4-подсети нужно цифру 2 произвести в степень количества узловых битов и вычесть 2.

Количество доступных узлов =  $2^{(число битов узла)} - 2$ 

- b. На калькуляторе Windows переключитесь в режим «Инженерный», открыв меню **Вид** и выбрав параметр **Инженерный**.
- с. Введите число 2.Нажмите кнопкух<sup>у</sup>. Эта команда возводит число в степень.
- d. Введите число 11.Нажмите=или клавишу ВВОД на клавиатуре, чтобы получить результат.
- е. Из результата вычтите2, при желании используя калькулятор.
- f. В данной сети доступны примерно 2046 узлов (2<sup>11</sup>-2).
- g. Зная количество узловых битов, определите количество доступных узлов и запишите это значение в приведённую ниже таблицу.

| Количество доступных<br>узловых битов | Количество доступных<br>узлов |
|---------------------------------------|-------------------------------|
| 5                                     |                               |
| 14                                    |                               |
| 24                                    |                               |
| 10                                    |                               |

h. Для данной маски подсети определите количество доступных узлов и запишите ответ в приведённую ниже таблицу.

| Маска подсети   | Двоичная маска подсети               | Количество<br>доступных<br>узловых битов | Количество<br>доступных<br>узлов |
|-----------------|--------------------------------------|------------------------------------------|----------------------------------|
| 255.255.255.0   | 11111111.11111111.111111111.00000000 |                                          |                                  |
| 255.255.240.0   | 11111111.11111111.11110000.00000000  |                                          |                                  |
| 255.255.255.128 | 11111111.11111111.111111111.10000000 |                                          |                                  |
| 255.255.255.252 | 11111111.11111111.11111111.11111100  |                                          |                                  |
| 255.255.0.0     | 11111111.11111111.00000000.00000000  |                                          |                                  |

## Часть 5: Преобразование MAC- и IPv6-адресов в двоичную форму

Для удобства адреса управления доступом к среде передачи данных (MAC) и адреса интернетпротокола версии 6 (IPv6) выражаются шестнадцатеричными цифрами. Однако компьютеры способны распознавать и используют для вычислений только двоичные цифры. В этой части занятия вам предстоит перевести шестнадцатеричные адреса в двоичные.

### Шаг 1: Переведите МАС-адреса в двоичные числа.

- а. МАС-адрес (или физический адрес) обычно выражается 12 шестнадцатеричными цифрами, сгруппированными в пары и разделёнными дефисами (-). В компьютерах на базе ОС Windows физические адреса обычно имеют формат хх-хх-хх-хх-хх, где х это цифра от 0 до 9 или латинская буква от А до F. Каждую шестнадцатеричную цифру в адресе можно конвертировать в четыре двоичных разряда, понятных компьютеру. Если все 12 шестнадцатеричных цифр перевести в двоичную форму, сколько разрядов получится?
- b. Запишите MAC-адрес своего ПК.

O ------ MAO -----

с. С помощью калькулятора Windows переведите MAC-адрес в двоичное число.

### Шаг 2: Переведите IPv6-адрес в двоичное число.

Для удобства IPv6-адреса также записывают шестнадцатеричными символами. Для компьютеров эти IPv6-адреса можно переводить в двоичные цифры.

- а. IPv6-адреса это двоичные числа, представленные в виде понятной для человека записи: 2001:0DB8:ACAD:0001:0000:0000:00001 или в короткой форме: 2001:DB8:ACAD:1::1.
- b. Длина IPv6-адреса составляет 128 бит. С помощью калькулятора Windows переведите пример IPv6-адреса в двоичное число и запишите результат в приведённую ниже таблицу.

| Шестнадцатеричное | Двоичное |
|-------------------|----------|
| 2001              |          |
| 0DB8              |          |
| ACAD              |          |
| 0001              |          |
| 0000              |          |
| 0000              |          |
| 0000              |          |
| 0001              |          |

### Вопросы на закрепление

1. Можете ли вы выполнить все эти операции без помощи калькулятора? Что для этого требуется?

2. В большинстве IPv6-адресов длина сетевой части составляет 64 бита. Сколько узлов доступно в подсети, где первые 64 бита соответствуют сети? Подсказка: для узлов подсети доступны все узловые адреса.